Targeted Mismatch Adversarial Attack: Query with a Flower to Retrieve the Tower

Tolias et al., ICCV 2019
Presented by: Woo Jae Kim

Table of Contents

- Motivation
- Related Works
- Methods
- Experiments
- Limitations

MOTIVATION

Problems of image search system

 Nowadays, users' query information used in image search may not be protected

¹Google Search Help: "The pictures you upload in your search may be stored by Google for 7 days. They won't be a part of your search history, and we'll only use them during that time to make our products and services better."

- How can we protect our "personal" query?
- **→** Adversarial attack

What is adversarial attack?

Adversarial attack: maliciously designed perturbation that when applied on image, causes a **machine learning model to make a mistake**

$$+.007 \times$$

 $\begin{aligned} \text{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y)) \\ \text{"nematode"} \end{aligned}$

8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

"panda"
57.7% confidence

 \boldsymbol{x}

How do we use adversarial attack?

- Aimed to fool DL-based image retrieval system
- Design adversarial query that return the same search results as target query but look visually similar to carrier image

RELATED WORKS

Adversarial attack

x = original image y = gt label x^{adv} = adversarial image ϵ = perturbation scale J_{θ} = classification loss of target classifier $Clip_{x,\epsilon}$ = pixelwise clipping

- Gradient-based attacks
 - Fast Gradient Sign Method (FGSM)
 - Maximizes first-order gradient of classification loss

$$x^{adv} = x + \epsilon \operatorname{sign}(\nabla_x J_{\theta}(x, y))$$

- Basic Iterative Method (BIM)
 - Iteratively repeats FGSM attack

$$x_0^{adv} = x$$
, $x_{N+1}^{adv} = Clip_{x,\epsilon} \left\{ x_N^{adv} + \alpha \operatorname{sign} \left(\nabla_x J_{\theta}(x_N^{adv}, y) \right) \right\}$

Adversarial attack on image retrieval

- Follows framework of adversarial attack on classification
 - Gradient-based approach
 - Generator-based approach
- However, these approaches used non-targeted attack
- Objective

$$L_{\text{nr}}(\mathbf{x}_c; \mathbf{x}) = \ell_{\text{nr}}(\mathbf{x}, \mathbf{x}_c) + \lambda ||\mathbf{x} - \mathbf{x}_c||^2$$
$$= \mathbf{h}_{\mathbf{x}}^{\top} \mathbf{h}_{\mathbf{x}_c} + \lambda ||\mathbf{x} - \mathbf{x}_c||^2$$

is optimized as:

$$\mathbf{x}_a = \arg\min_{\mathbf{x}} L_{\mathrm{nr}}(\mathbf{x}_c; \mathbf{x})$$

x = adversarial image $x_c =$ carrier image $y_c =$ gt label of carrier image $l_{nr} =$ performance loss

METHODS

Problem formulation

 Generate adversarial image that can be used to protect target query image

Problem formulation

• Generate adversarial image x that has high *descriptor* similarity but very low visual similarity to the target x_t

$$L_{\text{tr}}(\mathbf{x}_c, \mathbf{x}_t; \mathbf{x}) = \underbrace{\ell_{\text{tr}}(\mathbf{x}, \mathbf{x}_t)}_{} + \underbrace{\lambda ||\mathbf{x} - \mathbf{x}_c||^2}_{}$$

Performance loss: make the descriptors of x similar to that of target image x_t

Distortion loss: make x visually similar to carrier image x_c

Performance loss l_{tr}

 x^s = image x with resolution s g_x = feature descriptor of x $h_x = g_x$ passed through pooling layer $w_x = h_x$ passed through whitening $u(g_x, b)_i$ = histogram of activations from the ith channel of g_x on histogram bin centers b

- Global descriptor
 - Suitable when all parameters of retrieval system are known
 - Can be l_{GeM} , l_{MAC} , etc ... depending on pooling layer

$$\ell_{\text{desc}}(\mathbf{x}, \mathbf{x}_t) = 1 - \mathbf{h}_{\mathbf{x}}^{\top} \mathbf{h}_{\mathbf{x}_t}$$

- Activation tensor
 - Minimize the difference between features of x and x_t

$$\ell_{\text{tens}}(\mathbf{x}, \mathbf{x}_t) = \frac{||\mathbf{g}_{\mathbf{x}} - \mathbf{g}_{\mathbf{x}_t}||^2}{w \cdot h \cdot d}$$

Performance loss l_{tr}

 x^s = image x with resolution s g_x = feature descriptor of x $h_x = g_x$ passed through pooling layer $w_x = h_x$ passed through whitening $u(g_x, b)_i$ = histogram of activations from the ith channel of g_x on histogram bin centers b

- Activation histogram
 - Minimize distance on first-order statistics of feature g_x

$$\ell_{\text{hist}}(\mathbf{x}, \mathbf{x}_t) = \frac{1}{d} \sum_{i=1}^{d} ||u(\mathbf{g}_{\mathbf{x}}, \mathbf{b})_i - u(\mathbf{g}_{\mathbf{x}_t}, \mathbf{b})_i||$$

- Different image resolution
 - Ensures that attack is successful across different resolutions
 - Often applies Gaussian blur on x^s to generate $x^{\hat{s}}$

$$L_{\text{tr}}^{s}(\mathbf{x}, \mathbf{x}_{t}; \mathbf{x}) = \ell_{\text{tr}}(\mathbf{x}^{s}, \mathbf{x}_{t}^{s}) + \lambda ||\mathbf{x} - \mathbf{x}_{c}||^{2}$$

Performance loss l_{tr}

 x^s = image x with resolution s g_x = feature descriptor of x $h_x = g_x$ passed through pooling layer $w_x = h_x$ passed through whitening $u(g_x, b)_i$ = histogram of activations from the i-th channel of g_x on histogram bin centers b

- Ensemble
 - Combine l_{desc} for all possible pooling layers ${\cal P}$

$$\ell_{\mathcal{P}}(\mathbf{x}, \mathbf{x}_t) = \frac{\sum_{p \in \mathcal{P}} \ell_p(\mathbf{x}, \mathbf{x}_t)}{|\mathcal{P}|}$$

Optimization

- Adversarial image is generated by minimizing L_{tr}
- Uses gradient-based methods

$$L_{tr}(\mathbf{x}_c, \mathbf{x}_t; \mathbf{x}) = \ell_{tr}(\mathbf{x}, \mathbf{x}_t) + \lambda ||\mathbf{x} - \mathbf{x}_c||^2$$
$$\mathbf{x}_a = \arg\min_{\mathbf{x}} L_{tr}(\mathbf{x}_c, \mathbf{x}_t; \mathbf{x})$$

EXPERIMENTS

Experimental setup

- Datasets
 - Holidays, Copydays, \mathcal{R} Oxford, \mathcal{R} Paris
- Learning rate = 0.01, # iterations = 100 or 1000 (for L_{tens})
- Resolutions =

```
{}^{4}S_{0} = \{1024\}, S_{1} = S_{0} \cup \{300, 400, 500, 600, 700, 800, 900\},

S_{2} = S_{1} \cup \{350, 450, 550, 650, 750, 850, 950\}, S_{3} = S_{0} \cup \{262, 289, 319, 351, 387, 427, 470, 518, 571, 630, 694, 765, 843, 929\}
```

- Target models
 - AlexNet (A), ResNet18 (R), VGG16 (V)
- $(\mathcal{A}, L_{hist}^{S1}, 0)$ optimization on AlexNet using L_{hist}^{S1} with $\lambda = 0$
- $[\mathcal{A}, \text{GeM}, S_0]$ testing on AlexNet with test-pooling GeM and resolution S_0

Optimization iterations

- Carrier distortion increases as # iterations increases
- Performance loss (l_{tr}) decreases as # iterations increases
- Similarity to target/carrier increases/decreases as # iterations increases

Robustness to unknown test-pooling

- Mean average precision (mAP) and similarity $(x_t^T x_a)$ on different performance loss
- Adversarial query is tested under multiple test-pooling layers

h L_{tr}	Original	$L_{ m GeM}$	$L_{\mathcal{P}}$	$L_{ m hist}$	L_{tens}
	mAP	mAP difference to original			
GeM	41.3	-0.0	-0.0	-0.2	-0.1
MAC	37.0	-0.5	-0.0	-0.8	-0.0
SPoC	32.9	-4.4	-0.1	-0.1	-0.7
R-MAC	44.1	-1.2	-0.5	-0.7	-0.0
CroW	38.2	-1.3	-0.4	-0.2	-0.0
	$\mathbf{x}_t^{ op} \mathbf{x}_a$				
GeM	1.000	1.000	1.000	0.997	0.998
MAC	1.000	0.972	1.000	0.985	0.996
SPoC	1.000	0.909	1.000	0.999	0.996
R-MAC	1.000	0.972	0.978	0.979	0.997
CroW	1.000	0.968	0.994	0.995	0.998

Impact of distortion term

- Impact of λ on visualization of adversarial image
- Numbers below each image represent descriptor similarity with x_t

Concealing/revealing the target

• Target, carrier, and adv. images (top row), depth-wise maximum of g (middle row), and inversion of g (bottom row)

LIMITATIONS

Personal reflections

- The usage of distortion loss $||x x_c||^2$ is poorly justified
 - Even when its weight is 0, adversarial image retains high visual similarity to the carrier image
- Time taken for attack is too high
 - Optimization takes up to 68.4 sec on certain cases
 - Not practical on large-scale search with high # of queries
- Paper lacks experiments/analysis on black-box models
 - Practically, the models used for retrieval tasks are unknown
 - Proposed method may show limited performance when the model is not known

